
Javascript Basics

History
1995 — Famously written in one day by
 Brendan Eich for Netscape in 1995.

2005 — Not taken seriously until 2005 when
 Google used it to write Google Maps.

2009 — Ryan Dahl writes Node, creating
 server-side javascript.

2015 — Eric Nylund teaches Yale undergrads &
 prelims the basics of javascript.

Taichi Aritomo
2019 —

Taichi Aritomo
Taichi Aritomo and Laurel Schwulst teach the basics of JavaScript so that graduate students at Yale can make screensavers

“What language
should I learn?”

Why JS
— Built for front-end interaction so perfect for a
 graphic designer!
— Also used on the server-side so the syntax will
 be familiar.
— 100% javascript stack!
— Ever more frameworks use it:
 jQuery, Node, Mongo Db,
 Angular.js, etc, etc...

Load a JS file
Best to load it before
the closing body tag

Writing JS

Tip!
Instead of copy-pasting, we encourage you to type out the code you see in
these slides, because:

- It’ll help you think more about what you’re writing

- Some of the quote marks in this presentation are “Smart Quotes”, and
those will break your code.

Comments
How you and others keep track of what your code does.
The computer ignores it.

You make a single line comment with: //
& a multi-line comment with: /* */

 // The below function returns all usernames

 /*
 The below code is used to get
 the users 10 most recent tweets
 */

Debugging
Coding should be done incrementally.

Debugging is a way for you to check
your code as you write it.

Any time you make a change use console.log()
to be sure you are getting what you expect.

console.log() will take whatever is inside the
parentheses and log it to the javascript console
in your browser’s developer tools.

Most important line of code I’ll show you!

Debugging

Debugging—Console

Debugging—Console

Debugging—Example

These are the most basic types of
data the language recognizes:

 1–Integers
 2–Strings
 3–Booleans

Data Types

Used to represent numerical data.

To make a number in your code, just
write a number as numerals without quotes:

 5 // recent posts to get
 190.12334 // div position from top of browser
 2*50 // new y-position after each animation

Data Types—Integers

Used for storing textual information.

To write a string, surround words with quotes:

 “eric_nylund” // username
 “Interactive Design” // course title
 “5” + “7” // makes “57” not 12

Data Types—Strings

Used for representing a binary value
(true or false):

Often used in comparisons.
Examples:

 23 > 10 is true
 5 < 4 is false
 “abc123” === “abc123” is true
 currentStudent is true

Data Types—Booleans

Data Types—Examples

Data Types—Examples

A way to temporarily store values from your coding.

 var varName = data;

Examples with data types:

 var username = “Eric”;
 var classYear = 2015;
 var currentStudent = true;

Variables

Variables—Examples

Variables—Answers

A way to add/connect strings using: +

Example:

 var username = “Eric”;

 var greeting = “Hi ” + username + “!”;

Concatenation

Part 2:
Make the computer

make decisions!
aka Interaction!

Taichi Aritomo

Taichi Aritomo
Questions so far?

Part 2:
Make the computer

make decisions!
aka Interaction!

Computers think in 1s and 0s.
How can I turn my ideas into

a yes/no logic?

Should a div be visible on load?
Did the user click a button?

Did the user enter the right password?

Made up of the if keyword, a condition, and a pair of
curly braces { }. If the answer to the condition is yes,
the code inside the curly braces will run.

Syntax:
 if (condition) {

 // if the condition returns true then
 // execute code inside these brackets.
 // if false, skip this code.

 }

If Statement—Basic yes

If Statement—Example

In addition to doing something when the condition is true,
we can do something else if the condition is false.

 if (currentStudent === true) {
 console.log(“You are currently enrolled”);
 }
 else {
 console.log(“You are not enrolled”);
 }

If/Else Statement—Basic yes/no

Logical Operators
Used when several conditions need
to be evaluated at once.

 && (and) || (or) !== (not equal)

Logical Operators – Examples

Logical Operators – Answers

So far, we’ve only been able to store one number or
one string.

Arrays are used to store a set of related things.

 var arrayName = [data, data, data];

 var studentInfo = [“Eric”, “Yale”, 2015];

Arrays

Arrays—Access Elements

 var studentInfo = [“Eric”, “Yale”, 2015];

0 1 2

Arrays—Example

 var studentInfo = [“Eric”, “Yale”, 2015];

 console.log(studentInfo[0]);

 //Result: ??

Arrays—Example

 var studentInfo = [“Eric”, “Yale”, 2015];

 console.log(studentInfo[0]);

 //Result: Eric

While Loop
Repeat a block of code as long as a condition is still true

while (condition) {

 // code to execute

}

While Loop — Example
var counter = 1;

while (counter < 7) {

 console.log(counter);
 counter++;

}

// Result: ?

While Loop — Example
var counter = 1;

while (counter < 7) {

 console.log(counter);
 counter++;

}

// Result: 123456

While Loop — Example
var counter = 1;

while (counter < 7) {

 counter++;
 console.log(counter);

}

// Result: ?

While Loop — Example
var counter = 1;

while (counter < 7) {

 counter++;
 console.log(counter);

}

// Result: 234567

Repeat a block of code a set number of times.
Most often used to access elements of
an array one by one.

 for (counter; condition; increment) {

 //Code to execute

 }

For Loop

Repeat a block of code a set number of times.
Most often used to access elements of
an array one by one.

 for (counter; condition; increment) {

 //Code to execute

 }

For Loop

Decides how many times
the loop will run

 for (var counter = 1; counter < 7; counter++) {

 console.log(counter);

 }

 //Result:?

For Loop—Example

 for (var counter = 1; counter < 7; counter++) {

 console.log(counter);

 }

 //Result:?

For Loop—Example

 for (var counter = 1; counter < 7; counter++) {

 }

 //Result:?

For Loop—Example

Set before
first loop

Checked before
every loop

Done at the
end of each loop

 for (var counter = 1; counter < 7; counter++) {

 console.log(counter);

 }

 //Result:?

For Loop—Example

 for (var counter = 1; counter < 7; counter++) {

 console.log(counter);

 }

 //Result:123456

For Loop—Answer

For Loop w/ Array

For Loop and While Loop — Comparison

for (var counter = 1; counter < 7; counter++) {
 console.log(counter);
}

var counter = 1;
while (counter < 7) {
 console.log(counter);
 counter++;
}

Two ways to do the same thing

For Loop and While Loop — Comparison

for (var counter = 1; counter < 7; counter++) {
 console.log(counter);
}

var counter = 1;
while (counter < 7) {
 console.log(counter);
 counter++;
}

For — Good when you know how many
iterations you’re going to have

While — Good when you don’t know
how many iterations you’re going to have

When is While Loop useful? — Example

// get a random number from 1 to 6
var number = Math.ceil(Math.random()*6);

// keep trying as long as the number isn’t 6
while (number != 6) {
 number = Math.ceil(Math.random()*6);
 console.log(number);
}

While loops are best when you don’t know how many iterations you’re
going to have. e.g. you’re rolling a die but you really just want a 6.

When is While Loop useful? — Example

var myRoll = 3;
var numberIDontWant = 3;

while (myRoll == numberIDontWant) {
 myRoll = Math.random() * 6; // random num from 0 to 5.9999…
 myRoll = Math.ceil(myRoll); // round the number up
 console.log(myRoll);
}

While loops are best when you don’t know how many iterations you’re
going to have. e.g. you want to roll a die but you don’t want to roll a 3.

Don’t Repeat Yourself (D.R.Y)

The D.R.Y. principle is really important in
programming. No repeating!

Any time you find yourself typing the same thing,
but modifying only one small part, you can probably
use a function.

Functions

First define the function:

 var functionName = function(variable) {
 // code code code
 // code code code
 // (more lines of code)
 };

Functions—Syntax

First define the function:

 var functionName = function(variable) {
 // code code code
 // code code code
 // (more lines of code)
 };

Then you can call it at any time:

 functionName(value1);
 functionName(value2);

Functions—Syntax

Functions—Example

Function Syntax (Alternative)

function functionName(input) {
 // code code code
 // code code code
}

functionName(value1);
functionName(value2);

You can also define and call a function without storing it in a variable…

Timing
Run a function after 1000 milliseconds (1 second)

function functionName() {
 // code code code
 // code code code
}

// wait 1000 milliseconds, then call functionName
setTimeout(functionName, 1000);

Timing
Run a function every second, forever…

function tick() {
 console.log(“tick”);
 setTimeout(tick, 1000); // schedule next tick
}

tick(); // call tick for the first time

Variable Scope—Local vs Global
When you define a variable inside brackets,
it only exists inside the brackets!

Local Variable:
 var bar = function() {
 var localVar = “howdy”;
 }
 console.log(localVar); // error

DOM Element
DOM Element is a special data-type that lets you interact with HTML
elements.

var myElement = document.querySelector(“#special”);
console.log(myElement); // prints the DOM Element

<div id=“special”>my special element</div>
<div id=“regular”>my regular element</div>

In your Javascript:

In your HTML:

DOM Element
document.querySelector() lets you grab the first DOM Element in your
HTML that matches the given CSS selector.

var myElement = document.querySelector(“.box”);
console.log(myElement); // prints the first box

<div class=“boxes”>
 <div class=“box”>first box</div>
 <div class=“box”>second box</div>
</div>

In your Javascript:

In your HTML:

DOM Element
One way to be very specific is to get fancy with CSS selectors

var myElement = document.querySelector(“.box:nth-child(2)”);
console.log(myElement); // prints the second box

<div class=“boxes”>
 <div class=“box”>first box</div>
 <div class=“box”>second box</div>
</div>

In your Javascript:

In your HTML:

DOM Element(s)
document.querySelectorAll() gives you a collection of all the elements that
match the given CSS Selector.

var myElements = document.querySelectorAll(“.box”);
console.log(myElements); // prints all the boxes
console.log(myElements[0]); // prints the first box

<div class=“box”>first box</div>
<div class=“box”>second box</div>

In your Javascript:

In your HTML:

DOM Element — Properties and Methods
DOM Elements come with built-in properties and methods to interact with
the element on the page. Here are some useful ones!

var div = document.querySelector(“div”);

div.innerHTML = “<p>Hey!</p>”; // change the HTML
div.setAttribute(“id”, “greeting”); // set an attribute
div.className = “big”; // set a CSS class
div.classList.add(“visible”); // add a CSS class
div.classList.remove(“visible”); // remove a CSS class
div.style[“width”] = “100px”; // set a CSS property

Javascript:

Variable Scope—Local vs Global
When you define a variable inside brackets,
it only exists inside the brackets!

Local Variable:
 var bar = function() {
 var localVar = “howdy”;
 }
 console.log(localVar); // error

Going Further: Frameworks
A lot of frameworks have been built on top of Javascript. They can save
you the work of writing and testing complicated systems, but can make it
harder to break their rules or assumptions.

React
- For web apps that listen and respond to real-time changes in data

Gatsby
- For making static websites using reusable React-based templates and

components

jQueryJavascript
The programming
language of HTML and
the Web. Interaction with
the user, animation, etc, all
done with javascript.

Javascript library designed
to simplify the client-side
scripting of HTML.

Load a JS file
Order matters!!
 <!DOCTYPE html>
 <html>
 <head>
 <title></title>

 </head>
 <body>

 <div></div>
 <script type=’text/javascript’ src=’js/jquery.min.js’></script>
 <script type=’text/javascript’ src=’js/script.js’></script>
 </body>
 </html>

Resources
w3schools
Good quick reference with simple examples
- Javascript portal

Mozilla Developer Network (MDN)
Most up-to-date/legit documentation for web-standard HTML/CSS/JS
- Javascript portal
- In-depth beginner's tutorial

Google is your best friend!
stackoverflow.com

All this is gone over on:
codeacdemy.com

eloquentjavascript.net/

Final Notes

